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Abstract

AlthouglI  the general class of most scheduling problems is NP-hard, in practice, domain-spe-

cific techniques frcqucnt]y  SOIVC problems in much better than cxponcnlia]  time. Unfortu-

nately,  constructing spccinl-purpose systems is a knov~lcdgc–illtc]lsi~’c  and time-consuming

process that requires a deep understanding of the domain and problcm-solving architecture.

The goal of our work is to develop techniques to allow for autmatcd  learning of an effective

domain-specific search st ratcgy given a genera] problem solver with a flexible control archi-

tccturc. in this approach, a learning system explores :i space of possib]c  heuristic methods

for onc well-suited to the ccccntricitics of the. given domain and problcm distribution. We

discuss an application of the approach to scheduling satellite communications. Using prob-

lcm distributions based on actua] mission rcquircme])ts,  our approach identifies strategies

that not only dccrcasc the amount of CPU titnc rcquil cd to produce schedules, but also in-

crcasc the pcrccntagc of problems that arc solvable 1~’ithin  computational resource limita-

tions.
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1 INTRODUCTION

With the maturation ofautomatccl  problcnl-solvjn~  research has come grudging abandonment of the

search for “the” dol~):lill-illdcpcllclcr~t  problem solver. Genera] problcm-solvjng tasks like planning

and scheduling arc provably intractable. Although hcurjstic  methods arc. effective jn many practical

situations, an ever growing  body of work demonstrates the narrowness of specific heuristic strate-

gjcs (e.g., [13akcr94,  1~rost94,  K:illll>l]alllp:iti95,  Stonc94,  Yang94]). Studies repeatedly show that

a st ratcg y that CXCCIS cm onc task can perform abysmal 1 y on others. These negative results do not

entirely discredit doll~:iill-il~(lcl~c~ldcnt  approaches, but tbcy suggests that considerable effort and ex-

pcr[ise js required to find an accept ab]c combination of heuristic methods. 1 n fact, the few published

accounts of real-world illll>lcll~cllt:itiolls  lend suppori  to this conjecture (e.g. [Wjlkins88]).  The spec-

ificity  of heuristic mcthocls is cspccial]y  troubling when wc consider that problem-so]vjng  tasks fre-

qucnt]y  change over time. Thus, a hcurjs(ic  problcm solver may require expensive “tune-ups” as

the character character of the application changes.

A&ptivc  problem ,wdving is a genera] method for rcducin~,  the cost of dcve]oping  and maintaining

cffectjvc heuristic problcm solvers. Rather than forcing a dcvclopcr to choose a specific heuristic

strategy, an adaptive problcm solver acljusts  jtsclf to the idiosyncrasies of an application. This can

bc seen as a natural extension of the princjplc  of least colnmitmcnt  [Sacerdoti77].  When solving

a problcm, onc should not commit to a particular solution path until one, has information to distin-

guishes that path from the alternatives. Ljkewjse,  when faced with an cntjre  distribution of prob-

lems, it makes sense to avoid committing to a particular heuristic strategy until one can make an in-

formed decision OJI which strategy performs better on the distribution. An adaptive problem solver

embodies a space of heuristic methods, and only settles on a particular combination of these methods

af[er a period of adaptation, during which the system auto] natically  acqllircs information about the

patlicular  distrjbu(ion  of problems associated with the intended application.

in prcvjous art iclcs, the first author has presented a formal cbaractcrizatjon of adaptive problem

solvj ng and has dcvclopc(i  a general a genera] method for transforming a standard probkm  solver

into an adaptive onc [Gratch92,  Gratch94].  The primary purpose of this article is to build empjrjca]

support for the method by illustrating its application to a real-world problcm  solving task. After re-

viewing the basic method, wc dcscribc  its application to the development of a large-scale scheduling

syslcm  for the National Aeronautics and Space Administration (NASA). Wc applied the adaptive

problcm solving approach to a protot ypc scheduling system that was dcwclopcd  and by a separate

research group,  an~i without know]edgc  of our adaptive techniques. The prototype scheduler in-

cluded  an expert-craflcd schcdu]ing  strategy to achicvc  efficient scheduling performance. By auto-
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matically adapting this scbcduling  systcm to the ciistribution of scheduling problems, the adaptive

approach rcsultcci in a significant i mprovcmcnt in scbcdlding  performance over an already opti-

mized strategy: the best adaptation found by machine learning cxhibitccl an seventy percent im-

provement in scheduling performance. The article is organized as follows: the next section (Section

2) motivates the need for adaptive problcm solving and proviclcs  a forma] definition of the task; Sec-

t ion 3 reviews the COMPOSER system (a general approach for constructing an adaptive problem

solver); Section 4 dcscribcs the schcdu]ing  task, which in\rolves  schcdu]ing  communication events

between earth-orbiting satcl]itcs  and fixed ground stations; Section 5 details how we applied adap-

tive problem solving to efficiently construct an effective solution to this complex scheduling prob-

lcm; Section 6 reports on a series of empirical evaluations of the adaptive scheduling system; Section

7 discusses future work and Section 8 summarizes this ar{ic]c’s  contributions.

2 ADAPTIVE I’1{0111.IHVl SOI.VING

An adaptive problem solver defers the selection of a heuristic stl atcgy unti

be gathered about their performance over the specific distribution of tasks

some information can

The need for such an

approach is predicated on the claim that it is difficult to identify an effective heuristic strategy a prio-

ri. While this claim is by no means proven, there is considerable evidence that, at least for the class

of heuristics that have been proposed till now, no one collection of heuristic methods will suffice.

IJor cxamp]c,  K:ll~lbll:~l~ll>:lti,  Knob]ock,  and Yang [Kambhiimpati95]  illustrate how planning heuris-

tics embody dmign frmleqf”$ -– heuristics that reduce the size of search space typically increase the

cost at each node, and vice versa — and that the desired tradeoff varies wi[h clifferent  domains. Simi-

lar observations have been made in the contcxl  of constraint satisfaction problems [Baker94,

Frost94], This inherent difficulty in recognizing the worth (or lack of worth) of control knowledge

has been termed the ufility  problcm [Minton88]  and has been studied cxlcnsive]y  in the machine

learning community [Gratch92,  Grcincr92, Holdcr92,  Subramanian92].  In our case the utility prob-

]cm is determining the worth of a heuristic strategy for s~)ccific problcm  distribution.

2.1 FO1<M1II.ATION oh” AI)AIWIVK I)ROIII.13M  SOI.WNG

Before discussing approaches to adaptive problem solving, wc formally state the common definition

of the task (SCC [Gratch92,  Grcincr92, Laird92,  Subramanian92]). Adaptive problem solving re-

quires a flexible problcm solver, meaning the problem solver possesses control decisions that may

be resolved in alternative ways. Given a flexible problei n solver, 1’S’, with several control points,

Cl’] . . Cl>}l  (where each control point CPi corresponds to ii particular control decision), and a set of
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alternative heuristic ]ncthocls  for each control point, {Mi, ]...Mi,k,  },] a control strategy defines a spe-

cific method for every contro] point (c. g, SHUT= <MI,.3,M2,6,M.?,I  ,... >). A control strategy deter-

mines the ovcral  I behavior oft he problem solver. 1,et ]’SsT//,47. be the problem solver opcrat  ing under

a parlicu]ar control strategy.

The quality of a problem solving strategy is defined in tcrlns of the decision-theoretic notion of ex-

pcctcd  utility. l-et U(~)!$S~’//A~;  d), is a real valued z~tilit~~fl~ltcti[)}z  that is a measure of the goodness

of the behavior oft he problem solver over problem d. Ex pcctcci utility is defined forma]l y as:

E,)[ U(P5’LY,RA7)]  =  ~ U(PSL SIRA7, d x  ]]robat]ility(fi)
dcl)

The goal of adaptive problem solving can be expressed as: :,ivcn a problcm distribution D, find some

control strategy in the space of possible strategies that maximizes the cxpcctcd  utility of the problem

solvc~ For example, in the PRODIGY planning system [Minton88],  control points include: how

to select an operator to usc to achieve the goal; how to select variable bindings to instantiate the opcr-

at or; etc. A method for the operator choice cent rol point might bc a set of control rules to determine

which opcrat ors to usc to achieve various goals. A strategy for PRODIG Y would bc a set of control

rules and default methods for every control point (e.g., one for operator choice, one for binding

choice, etc.). Utility might be defined as a function of the time to construct a plan for a given plan-

ning problem.

2.2 AITROACIIKS  TO AI)A1)TIVK  I)ROIII.KM SOI.VING

Three potcntia]l  y complementary approaches to adaptive problcm  solving have been discussed in

the literature. ‘1’hc first, what wc call a synlactic  (ipproacll,  is to preprocess a problem-solving do-

main into a more efficient form, based solely on the domain’s syntactic structure. For example, Et-

z,ioni’s STATIC system analyzes a portion of a planing domain’s deductive closure to conjecture a

set of search control heuristics [Etzioni90].  Dcchter  and Pear] clescribc a class of constraint satisfac-

t ion techniques that preprocess a general class of problems into a more cfficicnt  form [Dcchtcr87],

More recent work has focusc(i on recognizing those structural properties that influence the effective-

ness of different heuristic methods [Frost94,  Kambhampat  i95, Stonc94].  The goal of this research

is to provide a problcm solver with what is essentially a big, lookLlp table, specifying which heuristic

strategy to usc based on some easily recognizable syntactic features of a domain, While this later

approach seems promising, work in this area is still preliminary and has focused primarily on artifi-

cial applications. The disadvantage of purely syntactic tccllniqucs  is that that they ignore a potential-

ly important source of information, the distribution of problems. I’iwthermore,  current syntactic ap-

1. ““ Nok fimt a mdhod  may consist d smaller clcmcats  so that a mc(hod  may be a set of control rules or a com-
biaatioa  of heuristics.



proachcs to this problcm have not been very genera]: they typically apply to a narrow class of

problems and arc specific to a particular, often unarticulated, utility function (usually problenl-solv-

ing cost),

TIN second approach, which wc call a generative  apprmch,  is to gcmxate  custom-maclc  heuristics

in response to carcfu], au[omatic,  analysis of past problem-solving attempts. C~enerative  approaches

consider not only the struct arc of the domain, but also structures that arise from the problem solver

interacting wilh specific prob]cms  from the domain. I’his approach is cxemplifiecl  by SOAR

[Laird86]  and lhc PRODIGY/E13L  system of Steve Minton [Minton88].  These techniques analyze

past problem-solving traces ancl conjectures heuristic control rules in response to specific problem-

solving incfficicncics. Such approaches can effectively exploit the idiosyncratic structure of a do-

main through this careful analysis. ‘1’hc limitation of such approaches is that they have typically fo-

cused on generating heuristics in response to par(icu]ar  p] oblcms  and have not well addressed the

issue of adapting to a distribution of problems. Furlhcrmorc, as with the syntactic approaches, thus

far they have been dircctccl towards a specific utility  function,

The final approach we call the statistical approach. These techniques explicit] y reason about perfor-

mance of different heuristic strategies across the distribution of problems. These are generally statis-

t ical gcl~cr:ltc-:tn(l-test approaches that cst i mated the average performance of different heuristics

from a random set oft raining examples, and explore an explicit space of heuristics with greedy

search techniques. Examples of such systems are. the COMPOSER systcm of Gratch  and DcJong

[Gratch92], the PALO systcm of Grcincr and Jurisica  [Grciner92],  and the statistical component of

Minton’s MUI.3’I-TAC [Minton93].  Similar approaches IIavc also bc.cn investigated in the opera-

tions research community [Yakowitz90].  These techniques are easy to USC, apply to a variety of do-

mains and utility funclions,  and can provide strong statistical guarantees about their performance.

They arc limilcd,  however, as they arc computationally  expensive, require many training examples

to identify a strategy, ancl face problems with local maxim  il. Furthermore, they typically leave it to

the user to conjcciurc the space of heuristic methods (SCC [Minton93]  for a notable exception).

In this article, wc adopt the statistical approach to adaptive problem solving due to its generality and

case of USC. in particular wc usc the COMPOSER tcchniquc  for adaptive problcm solving

[Gratch92, Gratch94], which is rcvicwcd in the next section. Our implementation incorporates some

novel features to acldrcss the computational expense of the method. ldcall  y, however, an adaptive

problcm solver would incorporate some form of each of these methods, To this end we are investi-

gating how to incorporate other methods of adaptation in our current research.
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r 3 COMPOSNR

COMPOSER embodies a s(a[istica] approach to adaptive problem solving. To turn a problem solver

I
into an adaptive problem solver, the developer is required to specify a utility function, a representa-

tive samp]c of tfaining  problems, and a space of possible heuristic strategies. COMPOSER then

adapts the problem solvcrby exploring the space of hcurist  ics via statistical hillclirnbing  search. The

I search space is defined in terms of a tra}z.~fort?z(~ti[)lz  genen~tor which takes a strategy and generates

I a set of tr:illsforll]:itio~ls  to it. Forcxamplc, one simple transformation .gcncratorjust  returns all single

method modifications to a given strategy. ‘rhus a transformation generator defines both a space of

possible heuristic strategies and the non-deterministic order in which Ibis space maybe searched.

COMPOSER’S overall approach is one of gencralc  and test hillc]imbing.  Given an initial problem

I solver, the transformation generator returns a set of possible transformations to its control strategy.

I These arc statistically evaluated over the expcctcd  distribution of problems. A transformation is

I adopted if it increases the cxpcctcd  performance of solving problc]ns over that distribution. The gen-

1 crater then const ruc(s a set oft ransformat  ions to this new strategy and so on, climbing the gradient

of cxpcctcd utility values.

Formally, COMPOSER t akcs an ini(ia] problem solver, 1’,9., and idcnt  ifics a sequence of problem

solvers, PSO, 1’S1, . . . where each subsequent PS has higher expecicd  uti]it y with probability 1 –6

(where 5>0 is some user-specified constant). The transformation generator, T(3, is a function that

t akcs a problem solver and returns a set of candidate changes. Apply(f,  1’S) is a function that takes

a t ransformat ion, t e TG(PS) and a problem solver and returns a nc.w problem solver t hat is the result

of transforming 1’S with t. l.ct Uj(PS) denote the utility of PS on problcm j. The change in utility

that a t ransformat  ion provides for thcjtb problem, called the incremental utility of a transformation,

is denoted by AUj(IIPS). This is the difference in utility between solving the problcm  with and with-

out the transformation. COMPOSER finds a problem solver with high cxpcctcd  utility by identify-

ing tr:tllsforl~l:ttiolls  with positive expected incremental utility. The expected incremental utility is

estimated by averaging a sample of randomly drawn incremental utility  values. Given a sample of
--—

n values, the average of that sample is denoted by AU,l(tl  PS). The like] y difference between the aver-

age and the true cxpcctcd incremental utility depends on tile variance of the distribution, estimated

from a sample by the sample variance  s~(dPs), and the size of the sample, N. COMPOSER provides

a statistical technique for determining when sufficient cxalnples  have been gathered to decide, with

error 6, that the expected incremental utility of a transforl  nation is positive or negative. The algo-

rithm is summari~,  ed in l;igure 1.



——

Given: PSoM, TG(), & examples

[1] PS := PSo/(/; 7’:= 7’G(PS);  i :=: O; n := O; U:= II014wI(5, 171);

[2] While T# 0 and n < Icxamp]csl do /* 1 Iillclimb as loIIg as there is data and possible transformations */

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Repeal /* l;ind ncx[ Iransfcmnation */

i := i+]; n := n+l; step–taken := FALSE;

~~~ ‘1’: Gct AUi(~lPS) /* Observe incrcn]cnta] utility WIILKS  for ith pmblcm */

{

Sydl’s)

}

/* CIollcct all transformations */

.Vigtlificant  ; = r G 7’: n > no and –-~~-— ~ < –-–’L- /* that haVC rcachcd *I

[3U,,(7WS)] l!x~~)l
2 / *  statistical si,gnificancc. * /

7’: = Y: {r E sig}2ifica/?l  : A U,,(TIPLY) < O] /* Discard trans. that dccrcasc  cxpcccd utility */

If 3Z E sig}z~jican~ :,4 U,,(rlPS)  > 0 T h e n
—.

/* Adop[  T (hat most increases cxpcctcd utility */

1’S = App/y(x E sig)~~jlcmf  : Vy E signijicmt  [A U,,(XIP,$) > A U,l(ylPS)  ], PS)
_ . . — .

7’:= 7’G(PS); 11 := o; a := Bmizd(&  1“1 ‘l); step--taken :=TRUE;

Until stcptakcn  or 7’=0 or n=lcxamplcsl;

Return: PS m

Rmd(d>  171) : = & , Q(a)  : = x where I ( ‘-)1 / ~r2n c o.sy’~y = ;

J

Figure 1: The COMJ’OSER ;lgorithm

COMPOSER’S tcchniquc is applicable in cases where the following conditions apply:

1. The control strategy space can bc structured to facilitate hillclimbing  search. In general, the space

ofsLlch  strategies is so large as to make exhaustive search illtractablc.  COMPOSER requires a trans-

formation generator that structures this space into a sequence of search steps, with relatively few

transformations at each step. in Section 5.1 wc discuss some techniques for incorporating domain

specific information into the structuring of the control strategy space.

2. There is a large supply of rcprcscntativc training problems so that an adequate sampling of prob-

lems can bc used to estimate cxpcctccl utility for various control strategies.

3. Problems can bc solved with a sufficicnt]y low cost in rcsourccs  so that estimating expected utility

is fcasib]c.

4. There is sufficient regularity in the domain such that the cost of lcaming a good strategy can bc

amorti~,ccl  over the gains in solving many prob]cms.
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4  ‘1’1111  1)11111}  SPACI1 NIITWORK

The Deep Space Network (DSN) js a multi-national collection of ground-based radio antennas rc-

sponsib]c  for maintainil~g colllllltl~lic:ltio~ls  wjth research satellites and deep space probes. DSN Op-

erat jons is responsible for schcdu] i ng communicant i ons for a large and growi ng number of spacecraft.

This already complex scheduling problem is becoming nlore  challenging each year as budgetary

pressures limit the construction of new antennas. As a result, DSN Operations has turned increasing-

ly towards intelligent scheduling techniques as a way of increasing the efficiency of network utiliza-

tion. As part of this ongoing effort, the Jet Propulsion Laboratory (JPL) has been given the rcsponsi-

bilit y of automating the scheduling ofthc  26-nlctcr  sub-net; a collection of three 26-meter antennas

at C]oldstone,  CA, Canberra, Australia and Madrid, Spain.

in this section wc discuss the application of adaptive problem-solving tcclmicjucs to the development

of a prototype system for automated scheduling of the 2.6-n~eter  sub-net. We first discuss the devel-

opment of the basic  scheduling system and then discuss how adaptive problem solving enhanced the

scheduler’s cffcctivcncss.

4.1 TIIIC SC1lE1)U1  .ING I’ROIII.ILM

scheduling  the DSN 26-nlctcr  subnct  can be viewed as a lal gc constraint satisfaction problem. Each

satellite has a set of constraints, called project requirements, that define its communication needs.

A typjca]  projccl  specifics three generic requirements: the lninimum  and maximum number of comm-

unication  events rcqujred  in a fixed period of time; the minimum and maximum duration for these

col~ll~lll~lic:itiol~  events; and the minimum and maximum allowable gap between communication

events. For example, Ninlbus-7, a meteorological satellite, must have at least four 1 S-minute conl-

municatjon slots per day, and these slots cannot be greater than five hours apart. Project require-

ments are dctcrmi  ncd by the project managers and tend to be invariant across the lifetime of the

spacecraft.

]n addition to projccl  rcqujrcmcnts, there are constraints associated with the varjous  antennas. First,

antennas arc a limited resource – two satellites cannot conllmmicate  with a given antenna at t~c same

tjmc. Second, a satellite can only communicate with a given antenna at certain times, depending on

when its orbit brings it within  view of the antenna. lbnal])r,  antennas Lmdcrgo routine maintenance

and cannot communicate with any satellite durin~, these times.

scheduling  is done on a weekly basis. A weekly scheduling problcm  is clcfined by three elements:

(1) the set of satellites to be scheduled, (2) the constraints assocjatcd  with each satclljte,  and (3) a

set of lime periods  specifying all temporal intervals when a satellite can legally communicate with

an antenna for that week. Each time period js a tuple  specifying a satellite, a communication time
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interval, and an antenna, where (1) the time interval must satisfy the communication duration

constraints for the satellite, (2) the salellite  must be in vic~!’  of the antcrrna during this interval. An-

tenna maintenance is treated as a project with lime periods and constraints. Two time periods con-

flict if they usc the same antenna and overlap in temporal extent. A valid schedule specifies a non-

conflicting subsei  of all possible time periods where each project’s requirements are satisfied.

The automated scheduler must generate schedules quickly as scheduling problems are frequently

over-constrained (i.e. the project constraints combined with the allowable views produces a set of

constrains which is unsatisfiable) When this occurs, DSNT Operations must go through a complex

cycle of ncgotiat  ing with project managers to reduce their ruquiremcnts.  A goal of automated sched-

uling is to provide a system with relatively quick response time so that a human user may interact

with the schcdu]cr  and perform “what if” reasoning to assist in this negotiation process. Ultimately,

the goal is to automate this negotiation process as well, which will place even greater demands on

schcdu]cr response t i me (see [ Chien94] for some preliminary work on th is 1 ater problem). For these

reasons, the focus of development is upon heuristic techniques that do not necessarily uncover the

optimal schcciLdc,  but rather produce a adequate schedule quickly.

4.2 ‘J’l IK 1.1{-26  SC1lIH)UJXR

1X-26 is a hcurist  ic schc[iu]ing  approach to DSN scheduling being dcve]opcd  at the Jet Propulsion

I.aboratory  [Bc1193].2  1X-26 is based on a O–1 integer linear programming formulation of the prob-

lem [Taha82]. Scheduling is east as the problem of finding an assignment to integer variables that

maximizes the value of some 01?jecI~I~e~14/IcI~071 subject to a set of linear constraints. In particular,

time periods arc treated as O-1 integer variables: O (or OU’J’)  if the time period is excluded from the

schedule; 1 (or IN) if it is included. The objective is to maximize the number of time periods in the

schedule and the solution must satisfy the project rcquirenlents  and antenna constraints (expressed

as sets of linear inequalities). A t ypica] schcuciling problem under this formulation has 700 variables

and 1300 constraints.

]n operations research, integer programs are solved by a vaj iety of techniques including branch-and-

bound search, the gomory  method [Kwak87], and Lagrarrgian  relaxation [I~ishcr81 ]. In artificial in-

te]ligcncc  such prob]cms arc solved by constraint propagation search techniques such as [Dechter92,

Mackworth92].  To a[i(ircss  the complexity of the scheduling problem 1.1<-26 uses a hybrid approach

that combines ].agrangian relaxation with constraint propagation search. 1.agrangian  relaxation is

a divicic-and-conquer  mctho(i which, given a decomposition of the schc(iuling  problem into a set of

easier sub-problems, coerces the sub-problems to be solvefi  in such a way that they frequently result

2. 1X-26 stands for the 1.agrangian Relaxation approach to scheduling the 26-nlckr  sub-net (see below).



I

in a global  solution. Onc specifies a problem decomposition by idc.ntifying  a subset of problem

consh-aints  ihat,  if rcmovecl,  result in one or more imicpcndcnt  and computationally  easy sub-prob-

lCnR3 These problematic constraints are “relaxed,” meaning  they no longer act as constraints but

instcacl arc added to Ihc objcctivc  function in such that way that (1) fhcrc is incentive to satisfying

these relaxed constraints when solving the sub-problems and, (2) the best solution to the relaxed

I problcm, if it satisfies all relaxed constraints, is guaranteed to bc the. best solution to the original

problem. Furthermore, this relaxed objective function is paramcterizcd  by [i set of weights (one for

each relaxed constraint). By systematically changing these weights (thereby modifying the relaxed

objcctivc function) the sub-problems can often be coerced into producing a global solution. Even

if this wcighl  search dots not produce a global solution, it can make the solution to the sub-problems

sufficiently close to a global  solution that a global solutio}]  can be cliscovcrcd with substantially re-

1 duccd constraint propagation search.

]n the DSN domain, the scheduling problcm  is decomposed by scheduling each antenna indepen-

dently. Specifically, the constraints associated with the cornpletc  problcm  can bc divided into two

groups: those that refer to a single  antenna, and those that mention multiple anlennas.  The later are

relaxed and the rcsul~ing single-antenna sub-problems can be solved in time linear in the number

of time periods associated with that antenna (SCC below). LR-26 SOIVCS the complete problem by

first trying to cocrcc a global solution by performing a search in the space of weights and then, if

that fails to produce a solution, resorting to constraint prf~pagation  search in the space of possible

schcdu]cs.

4.2.1 VhriablcLv  and Schedules

We now dcscribc the formalization of the problem. Let P bc a set of projects, A a set of antennas,

and M = {O,.., 10080] bc the minutes in a week. Let V c I)xAxMxM  denote the set of possible time

periods for a week, where a given time period specifies a project, antenna and the start and end of

the communication event, rcspcctivcly.  For a given vi ~ 1{ let ~~r~~e~~(vi),  ~~~l~en~la(vi),  .~tar~(vi), and

~}ld(vi) denote thc corresponding elements of vi.

With each time period, vi ● W wc associate a O--1 intcgel  variable, which wc will refer to as vi for

compact ncss. l.ct vi = 1 (vi= IN) mean that the time period is included in the schedule and vi = O

(vi = OUT) mean that the time period is cxcludcd  from the schcdulc,  A grmndschedule  is an assign-

ment of zero or onc to each vi E V We can denote a ground schcclulc  by an variable assignment func-

tions;  V+ {O, 1 }. A partial schedule refers to a scheclulc  with onl y a subset of its variables assigned

a valLIc,  denoted by a partial assignment function S]).’ V+{ o, 1, ? } (WhCI’C “?” indicates  that  the Vari-

3. A problcm  consists of iwirpe)tdc)?~  sub-problems it tbc global  objective function can be maximized by finding
scune  maximal solution  for cacb sub-problem in isolation.
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able could be either in or out ofthc ground schedule). A partial schcciule  corresponds a set of ground

schcdulcs consis[cnt  with the par[ial assignment. The completely uncommitted partial schedule

(with no variables assigncci a value), so: V -> { ?}, denotes the SC( of all possib]c  ground schedules,

4 . 2 . 2  Comttwints

Each project I) = P associalc(i with a set of constraints cal Icd project requirements. All constraints

arc proccsscd and trans]atc(i  into simple linear inequalities over clcmcnts  of V Project requirements

can bc parlitionc(i  into two sets of linear inequalities based on their syntactic form:

R] = { ~j a~”vj ~ l~i }, RI = { Xj (l~”vj S bi }.

where aij  rcprcscnts a weighting fiactor indicating the (iegrce  to which a particular view contributes

to satisfying a constraint. l~or example, the constraint that a project, ])j, must have at least 100 min-

utes of communication time in a week is a member of 1<1:

~ l,lclld(l)-.$(fl~[(l,)]  > IIN.
,.i c ~l,,,<lj,l  1(,,;) = ~1,.

TIc constraint on the minimum and maximum duration for a communication event is satisfied im-

plicitly in the definition of 1? vi = Viff rein-duration S e}l(l(~i)  – ~t(~r[(vi) S max-duration .4 All project

requirements can bc straightforwardly translated into a set on linear inequalities.

Each of the three antennas has the constraint that no two projects can usc the antenna at the same

time. This can bc translated into a set of linear inequalitim Ca for each antenna a as follows:

Co = { l~i + }f S 1 I l~i # 1~ A fl/lf~ll/lfl(l~i )=~/lf~/t/l~(lj)  =fl A [.$(~l~l(l~i)..~ll[](li)  lm[.~/~~f(\j)..e/zd(~)]  # @}

4.2 .3  l’roblcm lonnulatim

The basic scheduling objcclivc  is find some ground schcdulc,  dcnote(i  by s*, that maximizes the

number of time periods in the schcdulc  subject to the projccl  and antenna constraints:s

I’roblcm: I-MN

Find:
{

S* = arg max Z =
.! c .$()

Subject tO: c] UC2 UC.3UR]  VI(2

(1)

——

4. This restriction is nTI iahcrcnt limitation in the formalization as ihe schcciulcr  cannot entertain variable length
communication events – cmnmunicat ion events must bc dcscrctized into a finite set of fi xed length intervals.

5. . I’his might correspond to the clcsire to maintain maximum dowlllink flexibility. Alternative formalization
might attempt to minimiz.c  the number of views in the schedule to n)ode] reducing operations costs.



With Lagrangian relaxation, only the antenna constraints are retained and the remaining constraints

arc folded  into the objcctivc  function. The Lagrangian  relaxation formulation of the problem (due

to Colin  Bell) is:

——-

Prob]cm: DSN(Z/)

Find:

Subject to: c] UC2 UC.7
——

where Z([~) is the relaxed objective function and u is a vector of non-negative weights of length

IRIURZ  I (one for each rc]axcd constraint). Note that this defines a space of relaxed problems that

depend on the weight vector M. l.ct Z* denote the value of the optimal solution of the original prob-

lem (Definition 1), and let Z~’(u) denote value of the optimal solution to the relaxed problem (Defini-

tion 2) for a particular weight vector u. For any weight vector 14, Z+(u) can be shown to be an upper

bound on the value of Z*. Thus, if a relaxed solution satisfies all of the original problem constraints,

it is guaranteed to be the optimal solution to the original problem (i.e..?:  = s *). Lagrangian relax-

ation proceeds by incrementally tightening this upper bound (by adjusting the weight vector) in the

hope of identifying a global solution. A global solution cannot always bc identified in this manner,

so a compete scheduler must combi nc Lagrangian  rclaxat ion with some for of search.

4 .2 .4  Search

‘1’hc original problem formulation (1), can be solved (expcnsivcl  y !) by basic refinement search

[Kanlbhanlpati95] (or split-and-prune search [Dcchter87])  in the space of partial schedules. In this

search paradigm a par[ial schedule is recursively refined (split) into a set of more specific partial

schedules. In 1.R-26, refinement is clone by forcing uncornlnitted  time periods in or out of the sched-

LIIC, For example, a time period is excluded from the schedule if it temporally conflicts with a time

period that has been forced in. Search continues non-dctcrministicall  y until the best ground schcd-

ulc is found or all schcdu]cs  arc pruned.

Each refinement is further refined by propagat  ing the local consequence of new commitment. After

a variable is set to a par(icu]ar value, each individual constraint which references that variable is ana-

lyzed to determine which view would be forced in or out of the schedule as a result of the assignment.

1.R–26 performs on] y par[ia] constraint propagation, because complete propagation is conlputation-

ally expensive. Specifically, if constraint Cl references variables V2, V4 and V5, and V2 is assigned
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a value, 1.R–26  analyzes C 1 to scc if the ncw assignment determines the value of V4 and/or V5. If,

for example, V4 is constrained to take on a particular value, this Iriggcrs analysis of all constraints

which contain V4. This can bc viewed as performing arc–consistency [Dcchter92].  During the

constraint propagation it may bc possible to show that the rcfincmcnt contains no valid ground

schcdulc.  ]n this case the partial schcdulc  may bc pruned from the search.

LR-26 augments this basic rcfincmtmt search with l.agranp,ian  relaxation to heuristically rcducc the

combinatorics of the problcm.  ‘1’hc difficulty with refinement search is it may have to perform con-

siderable (and poorly dircctcd) search through a tree of refinements to identify a single  satisficing

solution. If an optima] solution is sought, every ]caf of this search tree must bc examined. b In con-

trast, by searching through the space of rchtxed  solutions to a partial scllcdu]c, one can sometimes

identify the best schcdulc  without  any refinement search. liven when this is not possible, Lagrangian

relaxation heuristically identifies a small set of problematic constraints, focusing the subsequent re-

finement search. Thus, by performing some search in the space of relaxed solutions at each step,

the augmented search method can significantly reduce both the depth and breadth of refinement

search.

The augmented proccdurc works to the extent that it can efficiently SOIVC relaxed solutions, ideally

allowing the algorithm to explore several points in the space of weight vectors in each step of the

rcfincmcnt search. 1.R-26 SOIVCS  relaxed problems in linear time, O(IC]  UC2UC31).  TO see this, note

that each time period appears on exact 1 y onc antcn  na. Thus Z(u) can bc broken into the sum of three

objcctivc  functions, each containing only the time periods associated with a particular antenna. Each

of these single  antenna problems can be formulated and solved as a problcm of finding the longest

path in an acyclic network: sort time periods by their s[art t imc; then for each view in sequence either

(1) cxcludc the time period, leaving the value of the schcdu]c  unchanged, and proceed to next time

period in scqucncc,  or (2) include the time period, increasing the value of the schedule by an amount

determined by the weight cocfficicrrts in the relaxed objective function, and proceed to next non-

ovcrlapping ti mc period in sequence. This can bc SOIVCC1 in linear time by dynamic programming

(SCC [IIC1193] for more details).

6. Partial schcdulcs may also bc pruned, as in branch-an(l-bouncl  search, if they can hc shown to contain lower
value solutions that other partial schcd LIlcs. In practice I R-26 is rutl in a safis’ici~~g I1)CMIC, meaning that search
terminates as mm as a grouncl schedule is found (not necessarily q)timal)  that satisfies all of the problem
constraints.

13



The augmented rcfincmcnt search pcrformccl  by I R-26  is summarized as follows:

1.1{-26 Schcdulcr
Ag(vIda := {,~()];
While Agenda # @

(1) Select some partial schcdulcs  G Agcncki;  AgJc/zda: =Agenda-
(2) search for Some s *(24) 6: s;

1 Fs *(14) satisfies R] UR2 l’hcn
Rctiirn s*(u);

Else
(3) Select constraint c e 1<1 uR.2 not satisfied by s*(u);
(4) Refine s into { .~i }, such Illat  each s’ c .~i satisfies c

ancl tJ{.~i } =- S;
Perform Constraint Prop[tgation

A~~Itda := A~cIId(IU{ .Ti } ;

{s)

Figure 2: The basic l,R-21i rcfincmcnt  search method.

Perhaps the most difficult decisions in constructing the schcdulcr  involve how to flesh out the details

of steps 1,2, 3, and 4. The constraint satisfaction and operations research literatures have proposed

many heuristic mcfhods  for these steps. Unfortunately, duc to their heuristic nature, it is not clear

what combination of mc[hods  best suits this scheduling problcm. The power of a heuristic method

depends on subtle factors that arc difficult to assess in ad~ancc. When considering multiple meth-

ods, onc has to additionally consider interactions betwecl~  methods.

In LR-26 a kcy interact ion arises in the tradeoff bctwee.n tllc amount of weight vector search vs. rc-

fincmcnt search performed by the schcdulcr  (as dctcrmincd  by Step 2). At each step in the refine-

ment search, the schcdulcr has the opportunity to search in the space of relaxed solutions. Spending

more effort in this weight search can rcducc the amount of subsequent refinement search. But at

some point the savings in rcduccd  rcfincmcnt  search may bc overwhelmed by the cost of performing

the weight search. This is n classic cxatnplc  of the utility problcm  [Minton88],  and it is difficult to

scc how best to resolve the tradeoff without intimate knowledge of the form and distribution of

scheduling problems.

Another import ant issue for improving scheduling efficiency is the choice of heuristic methods for

cent rolling the clircct ion of rcfincmcnt  search (as dctcrmincd  by steps 1,3, and 4). Often these meth-

ods arc stated as general princip]cs  (e.g. “first instantiate variab]cs  that maximally constrain the rest

of the search space” [IJcchtcr92  p. 277]) and there may bc many ways to realize them in a particular
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schcdu]cr  and domain. Furlhcrmore,  there are almost cerlainl y inte.rac[  ions bet ween methods used at

different control points Ihat makes it difficult to construct a good ova-all strategy.

These tmclcoffs conspire to make manual devcloprncnt  ancl evaluation of heuristics a tedious, uncer-

tain, and time consuming task that requires significant knowledge about the domain and scheduler.

]n the case of LR-26, its initial control strategy was idcntif]cd by hand, requiring a significant cycle

oft rial-and-error evaluation by the developer over a small number of arli fici al problems. Even with

this effort, the resulting schcdulcr  is still cxpcnsivc  to USC, motivating us to try adaptive techniques.

5 ADAPTIVE I’ROIII.IHM SOI,VING FOR ‘1’1311 DI;EP SPACE NETWORK

Wc dcvclopcd  an adapt ivc version of the scheduler, AdaI~live  LR-26, in an attempt to improve its

pcrfornlancc.7  Rather than committing on a particular combination of heuristic strategies, Adaptive

1X-26 embodies an adaptive problcm  solving sollltion.  Tllc schcclulcr  is provided a variety of heu-

ristic methods, and, after a period of adaptation, set(les on:( particular cmnbination  of heuristics that

suits the actual distribution of scheduling problems for this domain.

To perform adaptive problcm  solving, we must formall y s~wcify  three things: a transformation gen-

erator tb:it clefincs the space of legal heuristic control strategies; a utility function that captures our

prcfcrcnccs  over strategies in the control grammar; .‘md a rcprescntativc sample of training prob-

lems, Wc dcscribc each of these elements as they relate to the DSN scl~cduling problcm.

5.1 ‘J’l<ANsJ~O1<hlNl’10N  C; I; NERAI’OR

The description ofl.R-26  in l~igurc 2 highlights four points of non-determinism with respect to how

tbc schcdulcr performs its refinement search. To fully instantiate the scheduler we must specify a

way of ordering clcmcnts  on the agenda, a weight search method, a method for selecting a constraint,

and a method for generating a spanning set ofrcfincmcnts  that satisfy the constraint. The alternative

ways for resolving these four decisions arc specified by a control ,gra~}u}mr, which wc now describe.

The grammar clcfincs the space of legal  search control strategies available to the adaptive problem

solver.

S. 1. I Select some partial  ,vchedll/c

The first decision in the rcfincmcnt  search is to choose some partial schcdulc  from the agenda. This

se]cction  policy defines the character of the search. Maintaining the agenda as a stack implements

depth-first search. Sorting the agc.nda by some value function implements a best-first search. IJI

Adaptive 1.R-26  wc rest rict the space of methods to variants of depth- first search. Each time a set

of rcfincmcnts is crcatcd  (Decision 4), they arc added to the front of the agenda. Search always pro-

cccds  by expanding the first partial schcdulc  on the agenda. Heuristics act by ordering refinements

7. This systtm  has also been refcrrccl to by the name of lNN-COMPOWR  [Gratch93 ].
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before they arc added to the agenda. The grammar specifics several ordering heuristics, sometimes

called value  ordering heuristics, or look–ahec~d  schemes in the constraint propagation literature

[Dcchtcr92, Mackwor[h92]. As these methods are cntcrtaincd  during refinement construction, their

detailed description is delayed until that section.

I.ook-ahead schemes dcciclc  how to refine partial schcclulcs. Look-back schemes handle the reverse

decision of what to do whenever the schcdulcr  encounters a dead end and must backtrack to another

partial schedule. Standard depth-first search performs chronological backtracking, backing up to

the most recent decision. ‘1’hc constraint satisfaction literature has explored several heuristic alterna-

tives to this simple strategy, including  backjumping [Gaschnig79],  backmarking [Haralick80], dy-

namic backtracking [Ginsbcrg93],  and dependency-directed backtracking [Stalln~an77] (see Backer

[Baker94]  and Frost and Dcchtcr  [Frost94] fora recent evaluation of these methods). We arecurrent-

ly investigating look-back schemes for the control gramnlar but they will not be discussed in this

article.

S, 1.2 Search for some relaxed solution

The next dimension of flexibility is in weight-adjusting methods to search the space of possible re-

laxed solutions for a given partial schedule. The gcncml  goal of the weight search is to find a relaxed

so]ulion  that is closest to the true solution in the sense that as many constraints arc satisfied as pos-

sible. This can be achieved by minimi~,ing the value of Z’K(U) with respect to u. The most popular

method ofscarchillg  this space is called ,~li}>gr(l[lielzt-o]~  ti})~iz[ltiol~  [Fishcr8 1 ]. This is a standard op-

timization method that repeatedly changes the current u in the direction that most decreases Z*(u).

ThLIS at step i, lii+l = Z.ii + iidi where ~i is a StCp size and di is a directional vector in the weight space,

The method is expensive but it is guaranteed to converge to the minimum .Z*(Z4) under certain condi-

tions [I IcM70]. A less expensive technique, but without the convergence guarantee, is to consider

only onc weight at ii time WhCII finding an improving direction. ThUS I/i+ 1 = l/i + tidi where is a

directional vector with zeroes  in all but one location. This method is called  dual-descent. in both

of these methods, weights arc adjusted until there is no change in the relaxed solution: .~*(ui) =

.@(u;+]).

While better relaxed  so]utions  will create greater rc(iuctioll in the amount of subsequent refinement

search, it is unclcarjust  where the tradeoff bctwccn these two search spaces lies. Perhaps it is unnec-

essary to spend nlLIch time i reproving relaxed schcdulcs.  Thus a more raclical, and extremely effi-

cient, approach is to settle for the first relaxed solution found. We call this thcfirst-solution  method.

A more moderate approach is to perform careful weight search at the beginning of the refinement

search (where there is much to be gained by reducing the subsequent refinement search) and to per-
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form the more restricted first-solution search when clcepc]  in the refinement search tree. The triin-

(:~if[:d-dl~f~l-cl[:.~  ccilt mc[hod performs dual-descent at the initi:il  rcfincmcnt search node and then

uscs tllc~ir,~f-,~c~l[~lio~l  mcthocl  for the rest of the rcfincmcllt  search

‘l%c control grammar includes four basic mcthocls for performing the weight space search:

Weight Search Methods

2a: St)l}gradicllt-ol~ti  llli~,:itioll 2c: ‘1’runcated-dual-descent

2b: Dua]-dcsccnt 2d: I;irst-so]ution

S. 1.3 Seld some constriiint

If the schcdu]cr  cannot fin(i a rc]axecl solution that SOIVCS the original problcm,  it must break the cur-

rent partial schcdulc into a set of rcfincmcnts and explore them non-dcte.rministica lly. In Adaptive

1X-26, the task of creating rcfincmcnts is broken into two decisions: selecting an unsatisfied

constraint (Decision 3), and creating refinements that make progress towards satisfying the selected

constraint (Decision 4). Lagrangian  relaxation simplifies the first clccision by identifying a small

subset of constraints that appear problematic. However, this still leaves the problem of choosing one

constraint in this subset on which to base the subsequent ] cfincmcnt.

The common wisdom in the search community is to choose a constraint that maximally constrains

the rest of the search space, the idea being to minimize the size of the subsequent refinement search

and to allow rapid pruning if the partial schedule is unsatisfiable. Therefore, our control grammar

incorpomlcs several alternative heuristic methods for locally assessing this factor. Given that the

common wisdom is only a heuristic, we include a small nunlber  of mcthocls  that violate this intuition.

All of these methods arc functions that look at the local constraint graph topology and return a value

for each constraint. Constraints can then bc rankcc] by their value ancl the highest value constraint

Chosen. The control grammar implements both a primary and secondary sort for constraints.

Constraints that have the same primary value are ordered by their secondary value.

For the sake of simplicit  y wc discuss only measures for constraints belonging to RI. 8 Recall that

these constraints have the form ~ati~ 2 l~i. (The measures arc defined analogously for constraints

oft ypc 1<2.) Wc first clcfinc  measures on time periods. Measures on constraints are functions of the

measures of the time pcriocls that participate in the. constraint.

Measures on ‘lime IDcriocls

‘8. This umslrain[ [ypc sLIITiccs  10 represent the project rrquirments for the projects implemented in IX-26.
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An wlforced time period is onc that is neither in or out of the schcdulc  (vi=?). The ccv$’ictedness

of an unforced t i mc period v (with respect to a current parlial schcclulc) is the number of other un -

forcccl  t imc pcriocls that will bc forced out if v is forced int o the schcclulc  (because they participate

in an antenna constraint with v). If a time period is already forced out of the current partial schcdulc,

it dots not count toward v’s conflictedness.  Forcing in a time period with high conflictcdncss will

rcsu]( in many constraint propagations, which rcduccs  the number of ground schedules in the refine-

ment.

The gain of an unforced t imc period v (with respect to a current partial schedule) is the number of

unsatisfied project constraints that v participates in. Preferring time periods with high gain will make

progress towards satisfying many project constraints simultaneously.

The loss of an unforced time period v (with respect to a current parti:il  schedule) is a combination

of gain and conf]ictcdncss. Loss is the SLmI of the gain of each unforced time period that will bc

forced out if v is forced into the schcciu]c. Time period with high loss arc best avoided as they prevent

progress towards satisfying many project constraints.

To illustrate these measures, consider the simplified schcdu]ing  problem in Figure 3.

l’reject Constraints
l’] : v] + V2 + V.3 22

)’2: V2 + v? + V4 22

Antenna Constraints
Al: v] + v<? <1

&l&l A2:V2+V4<]

Figure 3: A simplified DSN scheduling problcm based on four time periods. There are two
project constraints, and two antenna constraints, For example, 1’] signifies that at least two of
the first three time periods must appear in the schcdulc,  and AI signifies that either v] or v~ may
appear in the schcdulc, but not both. In the solution, only vz ancl v.? appear in the schedule.

With respect to the initial partial schcdulc  (with none of the tirnc periods forced either in or out) the

confliclcdncss of vz is one, bccausc it appears in just one antenna constraint (A2). If subsequently,

V4 is forced out, then the conf]ictcdncss  of V2 drops to zero, as conflictcdncss  is only computed over

unforced time periods. The initial gain of v2 is two, as it appears in both project constraints. Its gain
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drops to one if v~ and V4 are then forced into the schedule, as P2 becomes satisfied. The initial loss

of V2 is the sum of the gain of all views conflicting with it (V4). The gain of V4 is one (it appears in

Pz) so that the loss of vz is one.

I Measures on Constraints

Constraint mcasLwcs  (with respect to a partial schedule) can be defined as functions of the measures

of the unforced t imc periods that participate in a const rain[. The functions max, rein, and total have

been defined. Thus, t{jtfil-{:[jllflictcdi?  e,~,~ is the sum of the conflictcdncss  of all unforced time periods

mentioned in a constraint, while mx-gain is the maximum of the gains of the unforced time periods.

~’hLls,  for the constraints defined above, the initial tot:il-collflictcd  ness of P1 is the conflictcdness of

Vl, V2 and V3, 1 + 1 + 1 = 3. ‘Ilc inilia] max-gain  of constraint PI is the max of the gains of Vl, V2,

and V3 or max{ 1,2,2) = 2.

Wc also define two other const raint measures. The Z{llfor(cd-l}eriocl.s  of a constraint (with respect

10 a partial schcdLI]c)  is simp]y  the number of unforced time periods that arc mentioned in the

constraint. Prefcrri ng a constraint with a small number of unforced time periods restricts the number

of rcfi ncmcnts  that must bc considcrcd, as refinements consider combinations oft i me periods to

force into the schedule  in order to satisfy the constraint, Thus, the initial unforced-periods of PI is

3 (v1, VZ, and v~).

The ,$~~li,$~a(:li{)ll  -c/i.~lc~l~cc  of a constraint (with respect to a partial schcd L]Ic) is a heuristic measure

the number of time pcriocls that must be forced in order to satisfy the constraint. The measure is

heuristic because it does not account for the dcpcndcncics  between time periods imposed by antenna

constraints. The initial satisfaction-distance of P1 is two bccausc two time periods must bc forced

in before the constraint can bc satisfied,

Given these constraint measures, constraints can be ordel ccl by some. measure of their worth. To

complete the definition of a constraint ordering heuristic we must specify if a measure is to bc pre-

ferred or penalized. For example wc may prefer constraints with high total conflictedness.  This hcu-

rist ic is denoted as j~rqf[?r-tc~tc~  l-c:ollfli(:led}  zcss. Not al I possible combinat  ions seem meaningful so

the control grammar for Adaptive 1.R-26 implements the following  nine constraint ordering heuris-

tics:
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Constraint Selection illcthocls

3a: Prefer-max-gai n 3f Penaliy,c-total-conflictcdncss

3b: Prefer-total-gain 3g: Prefer-min-conflictcclness

3c: l’cll:ilizc-l~l:~x-loss 3h: Pcnali~,c-unforced-periods

3cl: l’cnalizc-max-conflictcdncss 3i: Pcnali~,c-satisfaction-distance

3c: Prefer-total-conflictcdness

5.1.4  R@tlc par[ial  .w:11d141c

Given a selected constraint, the scheduler must create a set of refinements that make progress to-

wards satisfying the constraint. If the constraint is a member of R] (Xativj  2 l}i) then some time peri-

ods on the left-hand-side must be forced into the schedule if the constraint is to be satisfied, Thus,

refinements arc constructed by identifying a set of ways to force time periods in or out of the partial

schedules sL~ch that the refinements form a spanning set: u {.~i } =s. ‘1’hcsc refinements are then or-

dered and added to the agenda. Again, for simplicity wc restrict discussion to constraints in RI.

The Basic Rcfincmcnt Mcthocl

The basic method for refining a par[ial  schedule is to take each unforced time period mentioned in

the constraint and create a rcfincmcnt  with the time period ~ forced into the schedule. Thus, for the

constraints defined above,  there would be three refinements to constraint PI, one with VI forced IN:

one with V2 forced IN, and one with V3 forced IN.

Each rcfincmcnt is further refined by performing constraitlt  propagation (arc consistency) to deter-

mine some local consequences of this new restriction. Thus, every time period that conflicts with

~ is forced out of the refined partial schedule, which in tllrn may force Other time periods to bc in-

CI udcd, and so forth. By this process, some refi ncmcnts  maybe recognized as inconsistent (contain

no ground solutions) and arc pruned from the search space (for efficiency, constraint propagation

is only performed when partial schedules arc removed from the agcnd a).

Once the set of refinements has been created, they arc orclcrcd  by a value ordering heuristic before

being placed  on the agenda, As with constraint ordering llcuristics,  there is a common wisdom for

creating value ordering heuristics: prefer refinements that maximized Ihc number of future options

avai lablc for future assignments [Dcchter87,  H aralick80].  The control p,rammar implements several

heuristic methods using measures on the time periods that created the refinement. For example, one

way to keep options availab]c  is to prefer forcing in a time period with minimal conflictedness. As

the common wisdom is only heuristic, wc also incorporate a mcthocl  that violates it. The control
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grammar includes the following value ordering heuristics that arc derived from the measures on time

pcriocls:

Value Ordering Mctlmcls

1a: Prefer-gain 1 d: Prefer-conflictcdncss

1 b: Penalize-]oss 1 c: Arbitrary

1 c: Penalize-conflictcdncss

where the lasl method, arbitrary, just uses the ordering of the time pcriocls  as they appear in the

constraint.

The Systematic Refinement Mcfhod

The basic rcfincmcnt method has one unfortunate property that may limit its effectiveness. The

search result ing from this rcfincmcnt method is unsystematic in the sense of McAllister and Rosen-

blitt  [McAllcstcr91 ]. This means Ihat there is some redundancy in set of l’cfincmcnts:  sjm.y#@. Un-

systematic search is inefficient in that the total size of the refinement search space will be greater

than if a systematic (non-redundant) refinement method is used. ~’his may or may not bc a disadvan-

tage in pract icc as schcdu]ing  complexity is driven by the size of the search space actuall y explored

(the effective search sjmcc) rather than its total size. Nevertheless, there is good reason to suspect

that a systematic method will lead to smaller effective search spaces,

A systematic rcfincmcnt method chooses a time period that helps satisfy the sclcctcd  constraint and

then forms a spanning set of two rcfincmcnts:  one with tllc time period forced in and one with the

t imc period forced out. These rcfincmcnts arc guaranteed to bc non-overlapping. The systematic

method incorporated in the control grammar LISCS the value  ordering heuristic to choose which un-

forced time period to LISC. The two refinements arc ordered based on which makes immediate prog-

ress towards satisfying the constraint (e.g., v=IN is first fol constraints in 1<1 ). The control grammar

inc]udcs  both the basic and systematic refinement methods:

Refinement Methods

4a: 13:lsic-1~cfillcl13cllt 4b: Systcnlatic-Ref  incnlcnt
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For the problem specified in Figure  3, when systematically refining constraint PI, one would usc the

value ordering method to select among views VI, V2, and V3. If V2 were selected, two refinements

would be proposccl,  onc with VY forced IN and one with V2 forced OIJ’I’.

CONTl<O1  . STRAllKiY := VAI .UI~ ORDIiRING  A

Wtmnrr  SEAR(Y1 klETllOD A

PRIMARY  CONSIRAIN7  ORDIXING  A

SECONDARY CONSTRAINT ORORRING  A

RWINEMHN~  howl IOD

VA1.UE ORDliRING := {la, lb, lc, ld,le]
wljl~ll’1’  SIiAR~Il  MII’1’11OD := {2a, 2tJ, 2c., 2d)
P RIMARY CONSTRAINT ORDERING := {3a, 3b, 3c, 3d, 3c, 3f, 3g,, 3h, 3i)
SIKONDARY  CONS’IRAIN’I’  ORDERING := {3a, 3b, %, 3d, 3c, 3f, 3g, 3h, 3i)
RIWINEMRNI  MIiFr  IIOD := {4a, 4b}

FigLIrc  Q: Control grammar for Adaptive 1.R-26

The control grammar is summarized in Figurc 4. The original expert cent rol strategy developed for

LR-26 is a particular point in the control space defined by the grammar: the value ordering method

is arbitrary (1 c); the weight search is by dual-dcsccnt  (2b); the primary constraint ordering is penal-

izc-unforced-periods (311); there is no secondary constraint ordering, thus this is the same as the pri-

mary ordering; and the basic rcfincmcnt method is used (4a).

S. 1..5 Mcta-contro[  Knowledge

The constraint grammar defines a space of close to three thousan(i  possible control strategies. The

quality of a strategy must bc assessed with respect 10 a distribution of problems, therefore it is prohib-

itively cxpcnsivc  to exhaustively explore the control space: taking a significant number of examples

(say fifty) on each of the strategies at a cost of 5 CPU minutes pcr problcm would require approxi-

mately 450 CPU days of effort.

COMPOSER requires a transformation generator to specify alternative strategies. These strategies

arc explored via hillclimbing  search. In this case, the obvious way to procccci  is to consider all single

method changes to a given control strategy. However the cost of searching the strategy space and

quality of the final solution depend to a large extent on how hillclimbing  proceeds, and the obvious

way need not bc the best. In Adaptive 1X-26, wc augment the control grammar with some don~ain-

spccific knowledge to help organi~,c  the search. Such know]cdgc  includes, for example, our prior

expectation that certain control decisions would interact, :ind the likely importance of the different

control decisions. The intent of this “recta-control knowledge” is to reduce the branching factor in

the control stra[cgy search and improve the expected utility of the locally optimal solution found.



This approach led to a laycrccl  search through the strategy space. Each control decision is assigned to

a lCVCI.  The control grammar is search by evaluating all combinations of methods at a single level,

adopting the best combinations, and then moving onto the next ICVC1. “l’he organization is shown

below:

I.CVCI  o: {Weight search mclhod  }

I.CVC1  1: {Refinement method ]

IJCVC1 2: {Secondary constraint ordering, Value ordering}

I.cvcl 3: {Primary constraint ordering }

The weight search and rcfincmcnt control points arc sepal ate, as they seem relatively independent

from the other control points, in terms of their effect on the overall strategy. While there is clearly

some interaction bctwccn  weight search, refinement construction, and the other control points, a

good selection of methods for pricing and alternat ivc construction should perform well across all

ordcrjng hcurjst  its. The primary constraint ordcrj ng met hod is rclcgatcd  to the last level because

some effort was made in optimizing this decision in the expert strategy for LR-26, and wc believed

that it was unlikely the default strategy could be improved.

Given this transformation generator, Adaptive LR-26  performs hillclilnbing  across these levels. It

first entertains weight adjustment methods, then alternative construction methods, then combina-

tions of secondary constraint sort and child sort methods, and finally primary constraint sort nlcth-

ods. Each choice is made given the previously adopted methods.

This layered search can bc viewed as the conscqucncc  of asserting certain t ypcs of relations between

control points. independence relations indicate cases in which the utility of methods for one control

point is rough] y indcpcndcnt  of the methods used at other control points. Dominance relations incli-

catc that the changes in utility from changing methods for onc control point arc much larger than the

changes in utility for another control point, Finally, inconsistency relations indicate when a method

Ml for control point X is inconsistent with method M2 for control point Y This means that any strate-

gy using these mc(hods  for these control points need no( be considcrcd,

S.2 I? X1’IIC’J’111)  U’1’J I,I’J’>’

As prcvious]y mcnt ioncd,  a chief design requirement for LR-26 is that the scheduler produce solu-

tions (or prove that none exist) efficiently. This behavioral prcfcrcncc can be expressed by a utility

function rclatccl  to the computational effort required to solve a problcm.  As the effort to produce

a schedule incrcascs, the utility of the scheduler on that problem should decrease. In this paper, we

characterize this prcfcrcncc  by defining utility as the negative of the CPIJ time required by the sched-

u]cr on a problcm. Thus, Adaptive LR-26 tunes itself to strategies that minimize the average time
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I to generate a schedule (or prove that one dots not exist). Other utility funclions  could be entertained.

I in fact, more recent research has focused on measures of schedule qualit  y (SCC [Chien94]  for some

I preliminary results on this direction),

5.3 ])]{O]I1,EM I)ISTR1  IIUTION

Adaptive LR-26 ncccls a rcprcscntativc  sample of training examples for i{s adaptation phase. Unfor-

tunately, DSN Operations has only recently begun to maintain a database of scheduling problems

in a machine rc:idablc  format. While this will ultimately allow the scheduler to tune itself to the actu-

al problem distribution, only a small body of actual problen)s  was available at the time of this evalua-

tion. Thcrcforc, wc rcsor[cd  to other means to create a masonablc problem distribution.

We constructed an augmented set of training problems by syntactic manipulation of the set of real

prob]cms.  Recall that each scheduling problem is composed oft wo components: a set of project

requirements, ancl a set of time periods. Only the t imc periods change across scheduling problems,

so wc can organize the real problems into a set of tup]cs, one for each project, containing the weekly

blocks of time periods associated with it (one entry for each week the project is scheduled). The set

of augmented schcdu]ing  problems is constructed by t:iking the cross product of these tuples.  Thus,

a weekly scheduling problem is defined by combining onr weeks worth of time periods from each

project (time periods for different projects may be drawn frfml different weeks), as well as the project

rcquircmcnts for each. This simple procedure defines set of 6600 potential scheduling problems.

Two concerns lcd us to LISC only a subset of these augmented problems. l;irst, a significant percent-

age of augmented problems appeared much harder to SOIVC (or prove unsatisfiable) than any of the

real problems (on almost half of the constructed problems t he schmlulcr  d id not terminate, even with

large resource bounds). That such “hard” problems exist is not uncxpcctcd  as scheduling is NP-hard,

however, their frequency in the :tugmcntcd sample. seems d isproportionatc]  y high. Second, the exis-

tence of these hard problems raises a secondary issue of how best to terminate search. The standard

approach is to impose some arbitrary resource bound and to declare a problem unsatisfiable if no

solution is found within this bound. Unfortunately this raises the issue of what sized bound is most

reasonab]c.  We could have resolved this by adding the resource bound to the control grammar, how-

ever, at this point in the project we settled for a simpler approach. lnstcad, we address this and the

previous concern by excluding from the augmented problcm distribution those problems that seem

“fLllld:llllcllt:ll]y  intractable.” What this means in practice is that we exclude problems that could not

bc solved by any of a large set of heuristic methods within a five minute resource bound. (For a dis-

cussion of how wc arrived at this CI’lJ bound see Appendix A.) This results in a reduced set of about

three thousand scheduling problems. For comparative purposes, and to show the generality of adap-
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live problcm solving, wc include a secondary set of evaluations based on all 6600 augmented prob-

ICms.

I 6  IIMPIRICAI,  I~VAI.UAIION

The statistical theory that underlies COMPOSER predicts that, with high probability, Adaptive

I,R-26 will improve scheduling performance over the distribution of problems. This can be seen

as two basic claims that can bc tested empirically. l~irst,  Adaptive 1.R-26 should identify transfornla-

tions that improve the initial expert strategy associated wit]) LR-26. Second, it should identify these

transformations with the confidence predicted by the statistical theory. We arc also claiming that,

at least in practice COMPOSER can go beyond si Jnpl y inq)roving  performance, and identify strate-

gies that rank highly whcJl  judged with respect lo the whole space of possible strategies. A third

claim, therefore, is that Adaptive IX-26 will fiJld better stlatcgics  than if wc simply picked the best

of a large nuJnbcr  of raJldonl]y selected strategies. Elesidcs tcstiJ]g  Ihcsc three claiJns,  we are also

interested in three sccoJldary  qucstioJls: how quickly does the technique iJnproves  expected utility

(c.g,, how nlaJly  cxaJnplcs  arc required to make statistical infercnccs?); can Adaptive LR-26 inl-

provc the nuJnbcr  prob]cJns solved (or proved unsatisfiable) within the resource bound; and how

scJlsitivc is the cffcctivcJlcss of adaptive problem solving lo chaJlgcs in the distribution of problems.

I 6 . 1  MIWIODOI,OG}’

Our cvaluatioJl  is influenced by the stochastic nature of adaptive pJ”ob]cnl solving. During adapta-

tioJl,  Adaptive IX-26 is guided by a raJldonl  selection of training examples according to the problem

distributioJ1. As a result of this random factor, the systeJn wril] exhibit different behavior on different

ruJls of the system. OJI soJnc  runs the systeJn may learn hi~,h utility strategies; on other runs the ran-

doJn examples may poorly represent the distribution and the systeJn may adopt transformations with

Jlcgative  utility. ThLIS, our evaluation is directed at assessing the expcctwl  pcrforJnaJ]ce  of the adap-

tive schcdulcr by avcragiJ~g  results over twenty experimental trials.

I;or these experiments, the scheduler  is allowed to adapt to 300 scheduling problems drawn randonl-

ly from the problem distribution described above. The expected utilily of all learned strategies is

assessed on an indcpcndcnt  test set of 1000 test examples drawn randomly from the complete set

of three thousand. The adapt at ion rate is assessed by rc(ording  the st ratcgy ]carJled  by Adaptive

1.R-26  after every 20 cxaJnp]cs.  Thus wc can see the result of lcarJling with only twenty examples,

oJd y fort y examples, etc. We Jncasure  the statistical error of the technique (the probability of adopt-

ing a transforJnation with Jlcgative  incremental utility) by pcrforJning  eighty runs of the system on

eighty distinct training sets drawn randomly from the problem distribution. We measure the distribu-

tional sensitivity of the technique by evaluating the adaptive scheduler on a second distribution of
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Figure 5. Learning curve showing performance as a function of the number of training
examples and tab]c of cxpcrimcntal  results.

problems. Recall that wc purposc]y  exc]udcd inhcrent]y  difficult scheduling problems from the aug-

mented set of problems. If added, these excluded problems should make adaptation more difficult

as no strategy is likely to provide a noticeable improvement within the five minute resource bound.

The second evaluation inc]udes  these difficult problems

A third evaluation assesses the relative quality of the strategies identified by Adaptive LR-26 when

compared with other strategies in the strategy space. This is inferred by comparing the expected

utility of the learned strategies with several strategies drawn randomly from the space. This also

provides an opportunity to assess the quality of the expert strategy, and thus give a sense of how chal-

lenging  it is to improve it.

COMPOSER, the stat istica] component of the adaptive scheduler, has two parameters that govern

its behavior. The parameter 6 specifics the acceptable level of statistical error (this is the chance that

the tcchniquc will adopt a bad transformation or reject a good one). In Adaptive LR-26, this is set

to a standard valLlc  of 5%. COMPOSER bases each statistical inferences on a minimum of ~~ exam-

ples. in Adaptive IX-26, no is set to the empirically dctcrmincd  value of fifteen.

6.2 OV1lRAI>l, I{IMUI:l’S  — I)SN DISTRI  BUTION

Figure 5 summarizes the rcsu]ts of adaptive problem solving over the constructed DSN problem dis-

t ribut ion. The rcsu]ts suppori  the t wo primary claims. First, the system learned search control strate-

gies that yielded a significant improvement in performance. Adaptive problem solving reduced the
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average t imc 10 solve  a problem  (or prove it unsat isfi able) from 80 to 40 seconds

mcnt). Second, the observed statistical error fell well within the prcdictcd  bound,

formations adopted across the twenty trials, only 3% dccrcased  cxpcctc[i  utility.

(a 50% improve-

Of the 370 trans-

IIL]c  to the stochastic nat urc of the adaptive scheduler, different stratcg,ics  were learned on different

trials. All learned strategies produced at least SOJJ]C improvement in performance, The best of these

st ratcgics  rcqu i rcci on] y 24 seconds on average to solve a problem (an i mprovcmcnt  of 70%). The

fastest adaptations occurrcci early in the adaptation phase atld  performance improvements decreased

steadily throughout. It took an average of 62 examples to adopt each transformation. Adaptive

LR-26 showed some improvement over the non-adaptive scheduler in terms of the number of prob-

lems that cou](i bc solved (or proven unsatisfiable) within the resource bounci. LR-26 was unable

to solve21 (ZO of the scheduling problems within the resource bound. OJIC adaptive strategy reduced

this substantially reduced this number to 3%,

An analysis of the learned strategies is revealing. Most of t he performance improvement (about one

half) can be traced to mo(ijfications  in LR-26’s weight search method. The rest of the improvements

arc divided equally among changes to the heuristics for value ordering, constraint selection, and re-

finement. As cxpcctcd, changes to the primary constraint ordering on] y degraded performance. The

top three strategies arc illustrated in Figure 6.

1)

2)

3

Value ordering:
Weight  search:
Primary constraint ordering:
Secondary constraint orcicring:
Refinement method:

Value ordering:
Weight search:
Primary constraint ordering:
Secondary constraint ordering:
Refinement method:

VcliLIc ordering:
Weight search:
Primary constraint ordering:
Secondary constraint ordering:
Rcfincmcnt method:

pcnalizcconflic  tcdness (1 c)

first-sollltion  (2d)
penalize-unforced-periods (3h)
prefer-total-conflictc(incss (3c)
systcmat ic-rcfincmcnt  (4b)

prefer-gain (1a)
first-solution (2d)
penalize.-unforccd-pcriods (3h)
prefer-total-conflictcdness (3c)
systcm:i[ic-refinement (4b)

penalize-confiictcdncss (1 c)
first-solution (2d)
penalize-unforced-pcrio(is (3h)
pcnalim-satisfaction-clistance  (3i)
systcmat  ic-rcfincmcnt  (4b)

Figure 6: ‘l%c three highest utility stratcgjes  learned by Adaptive LR-26,
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For the weight search, all of the learned strategies used the first-solution mclhod  (2d). It secrns that,

at least in this domain and prob]cm distribution, the reduction in refinement search space that results

from better relaxed solutions is more than offset by the additional cost of the weight search. The

schcdu]cr did, however, benefit from the reduction in size that results from a systematic refinement

method.

More interestingly, Adaptive LR-26 seems to have “rediscovered” the common wisdom in heuristic

constraint-satisfaction search. When exploring ncw refinements, it is often suggested to chose the

least constrained value of the most constrained constraint. The best learned strategies follow this

advice while the worst strategies violate it, IJI the best strategy, the time period with lowest con-

flictcdncss  is least constraining (in the sense that it will tend to produce. the least constraint propaga-

tions) and thus produces the least commitments on the resulting partial schedule. By this same argu-

ment,  the constraint with the highest total conflicted will tend to bc the harclest to satisfy.

6.S OV1~RA1.1. RIN3U].TS — ]W1.1, AUGMI;NTED  I)ISTRIBUTION

Figure 7 summarizes the rcsu]ts for the augmented distt ibution. As expected, this distribution

proved more challenging for adaptive problem solving. Nevertheless, modest performance im-

provements were still possible, lcmiing support to our claimed generality of the adaptive problem

solving approach. Lcarncci strategies reduced the averagt:  solution time from 156 to 146 seconds

(an 6% improvement). The best learned strategies required 133 seconds on average to solve a prob-

lcm (an improvement of 15%). The observed statistic:il accuracy (iicl not significantly differ from

the theoretically prcdictcd  bound, although it was slightly llighcr than expected: of 397 transforma-

tions were adopted across the trials, 6% produced a decrease in expected utility. The introduction

of the difficult problems resulted in higher variance in the distribution of incremental utility values

and this is rcflcctcci in a higher sample complcxit  y: an average of 118 cxamp]es to adopt each trans-

formation. Some improvement was noted OJI the supposedly int ractablc  problems. Onc strategy

]carned by Adaptive 1.R-26 increased the number of problems that could bc processed within the

resource bound 51$10 to 57q0.

Onc interesting result of this evaluation is that, unlike the previous cvaluat  ion, the best learned strate-

gies usc truncatc~i-ciual-cicsccnt as their weight search method (the strategies were similar along oth-

er control dimensions). ‘l’his illustrates how even mociest  changes to the distribution of problems

can influcncc  the design tradeoffs associated with a problcm  solver: in this case, changing the trade-

off bctwccn weight aJKl rcfincmcnt search.
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Figure 7. Learning curves and table of experimental results showing performance over the
augmented distribution (including “intractable” problems).

6.4 QUALITY OF I.lIARNIID STRAI’l;GIIM

The third claim is that, in practice, COMPOSER can iclenti~y  strategies that rank highly when judged

with respect to the W11OIC  strategy space. A secondary question is how well does the expert strategy

perform. The improvements of Adaptive LR-26 arc of little significance if it the expert strategy per-

forms worse than most strategies in the space. Alternatively, if the expel-t  strategy is extremely good,

its i mprovcmcnt is compel 1 i ng.

As a way of assessing these claims we estimate the probability of selecting a high utility strategy

given that wc C11OOSC it randomly from one of three strateF,y spaces: the space of all possible strate-

gies (cxprcssiblc in the transformation grammar), the space of strateg,ics produced by Adaptive

1.1<-26, and the t rivial space cent aining only the expert strategy. This corresponds to the problem

of estimating a probabili~j~ density function (p.d.f.) for each space: a p,d. f., ~(x)j  associated with a

random variab]c  gives the probability that an instance of the variable has value x. More specifically

wc want to estimate the density functions,  js(u), which is the probability of randomly selecting a a

strategy from space s that has expected utility u.

We usc a non-parametric density estimation technique cal led the kernel method to estimatefi(u)  (as

in [93]). To estimate the density function of the whole space, wc randomly selected and tested thirty

strategies. All of the learned strategies arc used to cstitnatc  the density of the learned space. (ln both

cases, five pcrccnt  of the data was withheld to estimate the bandwidth parameter used by the kernel
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method.) The p.d.f. associated with the single expert strategy is estimated using a normal model fit

to the 1000 Icst examples from the previous evaluation.

6.4.1 DSN Distribution

Figure 8 illustrates the results for the DSN distribution. In this evaluation the learned strategies sig-

nificantly outpcrformccl  the randomly selected strategies. Thus, onc would have to select and test

many strategies a random before finding one of comparable expected utility to one found by Adap-

tive LR-26.  The results also indicate that the expert stratep,y  is already a good strategy (as indicated

by the relative positions of the peaks for the expert and random striitcp,y  distributions), indicating

that the improvement duc to Adaptive LR-26 is significant and non-trivial.

The results proviclc additional insight into Adaptive LR-26’s  learning hchavior.  That the p.d,f for

the learned strategies contains several peaks, graphically illustrates that ciiffcrent local maxima exist

for this problcm. g’hL]s, there may bc benefit in running th{ systcm  multiple times and choosing the

best strat

0.140
&
:2 0.120
m
~ 0.100
k

0.080

0.060

0,040

0.020

(1
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Figure 8: The DSN Distribution. The graph shows the probability of obtaining a strategy of a
particular utility, given that it is chosen from (1) the set of all strategies, (2) the set of learned
strategies, or (3) the expert strategy.

6.4.2 lull  Augmmted Distribution

Figure 9 illustrates the results for the full augmented distribution. The results are similar to the DSN

distribution: the lcarnccl  strategies strategies again outperformed the expert strategy which in turn

again outperformed the randomly selected strategies. The data shows that the expert strategy is sig-

nificantly better than randomly selected strategies. Together, these two evaluations support the

claim that Adaptive 1.1/-26 is selecting high performance strategies. Even though the expert strategy
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is quite good when compared with the complete strategy space, the adaptive algorithm is able to im-

prove the expected problem solving performance.
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Figure 9: The FL]]] augmented distribution. The graph shows the probability of obtaining a
strategy of a particular utility, given that it is chosen froln ( 1 ) the set of all strategies, (2) the set
of learned strategies, or (~) the expert strategy.

7 lWTURK  W O R K

The results of app] ying an adaptive approach to deep space network scheduling are very promising.

We hope to build cm this success in a number of ways. We discuss these directions as they relate to

the three basic approaches to adaptive problem solving: syntactic, generative, and statistical.

7.1 SYNTACTIC AI’1’ROACI [IN

Syntactic approaches attempt to identify control strategies by analyzing the structure of the domain

and problem solver. lJ1 1.1<-26, our use of recta-control knowledge can be seen as a syntactic ap-

proach; although unlike most syntactic approaches that attempt to iclentify  a specific combination

of heuristic Jncthocls,  the recta-knowledge (dominance and indifference relations) acts as constraints

that on] y pariiall  y determine a strat egy. An advantage of this weakening of the syntactic approach

is that it lends itself to a natural and complementary interaction with statistical approaches: structur-

al information restricts the space of reasonable strategies, which is then explored by statistical tech-

niques. An impor[ant  question concerning such knowledge is to what extent does it contribute to

the success of our evaluations, and, more interestingly, how could such information be derived auto-

matically from a structural analysis of the domain and problem solver. WC are currently performing

a series of cxpcrimcnts  to address the former question. A slcp towards the resolving the second qucs-
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lion would  bc to evaluate in the context of LR-26 some of the structural relationships suggested by

recent work in this area [II-os(94, Stone94].

7.2 GENERKJIVIC  A1’1’I{OACIIES

Adaptive LR-26 uscs a non-generative approach to conjecturing hcuris[ics.  Our cxpcricnce in the

schcdu]ing  domain indicates that the performance of adaptive problcm  solving is inextricably tied

to the transformations it is given and the cxpcnsc  of processing examples. Just as an inductive learn-

ing tcchniquc  relics on good attributes, if COMPOSER is to bc cffcctivc, there must exist good rncth-

OCIS for the control points that make up a strategy. Gencrat ivc approaches could improve the effec-

tiveness of Adaptive LR-26.  Generative approaches dynamically construct heuristic methods in

response to observed problem-solving inefficiencies. The advantage of waiting until inefficiencies

arc observed is twofold. First, the exploration of the strat cgy space can bc much more focused by

on] y conjecturing heuristics relevant to the observed comp] ications. Second, the conjectured heuris-

tics can bc tailored much more specifically to the characteristics of these observed complications.

Our previous app] i cat ion of COMPOSER achicvcd greater performance improvements that Adap-

tive 1.R-26, in part bccausc it exploited a generative techtlique  to construct heuristics [Gratch92].

Ongoing research is dircctcd  towards incorporating gcncrat  ivc methods into Adaptive LR-26.  Some

preliminary work analyzes problem-solving traces to induce good hcuris(ic  methods. The constraint

and value ordering metrics discussed in Section 5.1.3 arc used to characterize each search node. This

information is then fcd to a (iccision-tree algorithm, which tries to inclucc  effective heuristic meth-

ods. ‘1’hcsc gcncratccl  mcthocls can then bc evalu:ttcd  statistically.

7,3 STATJSTJCA1. A1’1’I<OACIIES

Finally there arc directions of future work devoted towards enhancing the, power of the basic statisti-

cal approach, both for Adapt ivc LR-26 in particular, and for statist ica] approaches in general. For

the schcdulcr,  there arc two important considerations: enhancing the control grammar and exploring

a wider class of ut ility functions, Several methods could bc added to the control grammar. For cxarn-

plc, an informal analysis of the empirical cva]uations  suggests that the schcdu]cr  could benefit from

a look-back schcmc such as back jumping [Gaschnig79]  or backmarking [11aralick80].  We would

also like to investigate the aclaptivc problcm  solving methodology on a richer variety of scheduling

approaches, besides integer programming. Among these would bc more powerful bottleneck cen-

tcrcd techniques [Bicfcld89],  constraint-based techniques [Snlith93],  opportunistic techniques [Sa-

dch94], rcactivc techniques [Snlith94]  and more powerful backtracking techniques such as

[Xiong92].

32



The current evaluation of the scheduler focused on problcm  solving time as a utility metric, but fu-

ture work will consider how to improve other aspects of the schedulers capabilities. For example,

by choosing another utility function we could .guidc Adaptive I-R-26 towards influencing other as-

pects of LR-26’s behavior such as: incrcasi~]g  the amount of flexibility in the generated schedules,

increasing the robustness of gcneratcci schcduks,  maximizing the number of satisfied project

constraints , or rc(iucing  the implementation cost of genci ated schcdulcs.  These alternative utility

functions arc of great significance in that they provide much greater lewcrage  in impacting actual

operations. For example, finding heuristics which will reduce DSN schedule implementation costs

by 3% has a much greater impact than reducing the automated schcdulcr  response time by 3%. Some

preliminary work has focused on improving schedule quality [Chicn94].

More gcncral]y,  there arc several ways to improve the statistical approach embodied by COMPOS-

ER. Statistical approaches involve two processes, cstimat ing the utility of transformations and ex-

ploring the space of strategies. The process of estimating expected utilities can bc enhanced by more

efficient statistical methods [Chicn95,  Moore94,  Nclson95], alternative statistical decision require-

ments [Chicn95]  an(i more complex statistical models that weaken the assutnption  of normality

[Snlyth92],  The process of exploring the strategy space can be improved both in terms of its efficien-

cy and susceptibility to local maxima, Moore and 1.CC propose a method called schemata search to

help rcducc the combinatorics of the search. Problems with local maxi[na  can bc mitigated, albeit

cxpcnsivcly,  by considering all k-wise combinations of heuristics (as in MULT1-TAC  [Minton93]

or lCVC1  2 of Adaptive 1.R-26’s  search), or by standard nulncrical  optimization approaches such as

repeating the hillclimbing search several times from different start points.

Onc final issue is the cxpcnsc  in processing training examples. In the 1.R-26 domain this cost grows

linearly with the number of candidates at each hillclimbin~,  step. While.  this is not bad from a com-

plcxit y standpoint, it is a pragmatic concern. There have been a few proposals to reduce the expense

in gathering statistics. in [Gratch92]  wc exploited properties of the transformations to gather statis-

tics from a single solution attempt. That systcm requirc(i  that the heuristic methods only act by prun-

ing rcfincmcnts that arc guaranteed unsatisfiable. Greincr and Jurisica  [Grciner92]  discuss a similar

tcchniquc that eliminates this restriction by providing upper and lower bounds on the incremental

utility oft ransformat  ions. Unfortunate] y, neither of these approaches could bc applied to LR-26 so

devising mcthocis  to rcducc the processing cost is an important direction for future work.

‘9. lkw a description of preliminary work in this area sce lChien941.
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8 CONCLUSIONS

Although many schcdu]ing  problems are intractable, for actual  sets of constraints and problem dis-

tributions, heuristic solutions can provide acceptable performance. A frcclucnt difficulty is that de-

termining appropriate heuristic methods for a given problcm  class and distribution is a challenging

process that draws upon deep knowledge of the domain and the problcm solver used. Furthermore,

if the problcm  distribution changes sometime in the future, one must manually re-evaluate  the effec-

tiveness of the heuristics.

Adaptive problem solving is a general approach for reducing this developmental burden. This paper

has dcscribccl  the application of adaptive problem solving, using the 1.R--26 scheduling system and

the COMPOSER machine learning system, to automatically learn cffcctivc  scheduling heuristics for

Deep Space Network collll~l~lllic:itiolls  schcdu]ing.  By delnonstrating  the application of these tech-

niques  to a real-world application problem, this paper has makes several contributions. First, it pro-

vides an example of how a wide range of heuristics can bc integrated into a flexible problem-solving

architecture — providing an adaptive problcm-solving system with a rich control space to search.

Second, it demonstrates that the difficulties of local maxima and large search spaces entailed by the

rich control space can bc tractably explored. Third, the successful application of the COMPOSER

statistical techniques dCJllOJIStJIlteS  the real-world applicability  of the statistical  assumptions under-

lying the COMPOSIHl approach. Fourth, and most significantly, this paper demonstrates the viabil-

it y of adaptive prob]cm solving. The strategies learned by tile adaptive problcm solving significantly

out performed t hc best human expert derived solution.

AI’PI;NDIX A: DETIIRMINATION OF TH1; RILSOURCE  130[JNI)

A good CI’U bound to characterize “intractable” problems should have the characteristic that in-

creasing the bound S11OUICI have little effect OJI the proportion of problems solvable. ]n order to deter-

mine the rcsourcc bound to define “intractable” DSN schcdu]ing  problems wc empirically evaluated

how likely 1.1<–26 was to bc able to solve a problcm  with various rcso~ucc  bounds. informally, we

expcrimcntcd to find a boLInd of 5 CPU minutes. We then formally verified this bound by taking

those problems not solvable within the resource bound of 5 CPU minutes, allowing LR–26 an addi-

tional CPU hour to attempt to SOIVC the problem, and observing how this affcctcd solution rate. As

cxpcctcd,  CVCJ1  allocating significant more CPU time, LR- 26 was JIO1 able to solve many more prob-

lems. Figure 10 below shows the cumulative percentage of problcnls  solved; from those not solvable

within the 5 minute CPU bound. This curve shows that even with another CPU hour (per problem!),

only about 12% of the problems bccamc solvable. This graph also shows the 9570 confidence inter-

vals for this cumulative curve. In light of these results, the fi~ct that onc learned strategy was able
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to increase by 1 tl% the percentage of problems solvable within the resource bound is even more

impressive. In effect, lcaming this strategy has a greater impact than allocating another CPU hour

pcr problcm.
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Figure 10: Given that a problem cannot be solved in five minutes, show the probability that
it can bc solved in up to an hour more time (with 95% confidence intcrva]s).
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